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ABSTRACT
Causal uncertainty – how sure we are in what produced a sound
that we are listening to – is a fundamental aspect of auditory cogni-
tion. It is known to be a driver of affect perception, attention, and
memory, among other processes. Here, we present an optimization
pipeline that systematically manipulates a sound object’s intrin-
sic causal uncertainty by applying a set of acoustic transforms,
such as scaling a sound’s pitch, amplitude, playback speed, etc. The
optimization estimator attempts to produce parameter values for
these transforms that modify a sound’s causal uncertainty (Hcu ),
as measured by the prediction confidence of an audio classification
neural network, while minimizing changes to the resulting predic-
tion labels and transform magnitudes. We then conduct a listening
test with N=20 participants to confirm that the causal uncertainty
changes resulting from our proposed procedure align with human
perception. Though a simple approach, this work demonstrates a
first step towards generative audio systems that operate along cog-
nitive dimensions, with powerful implications for user experience
design.
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1 INTRODUCTION
When we listen to a sound, the way that our minds subconsciously
process what we hear depends on the interaction between low-level,
acoustic properties of the sound, as well as higher-level, semantic
properties [5, 6, 9, 10, 12, 13, 16, 20, 21, 24].

Research shows that we employ both sets of properties to make
complex inferences about the world around us. For example, if
we hear a dog barking, we might notice that the pitch of the bark
is low, but that its amplitude relative to the other sounds in our
periphery is high, thereby drawing our attention. At the same time,
we may process more abstract features about the sound, such as
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its emotionality, which leads us to believe that the dog is not a
threat as we take a walk. Perhaps most importantly, ecological
sound psychology research demonstrates that one of the primary
processes that our mind engages in when interfacing with a sound
object is attempting to estimate its source, or cause [4, 19]. When
asked to describe the sound, for instance, we might say “a dog
barked," suggesting that we have immediately inferred the cause of
the sound.

This high-level aspect of auditory cognition – causal estimation
– is known to play an important role in sound understanding. When
treated as an intrinsic property, causal uncertainty, or how apparent
the source of a sound is, has been shown to be a powerful indicator
of how likely we are to remember the sound, attend to it, or respond
to it emotionally [4, 19, 23].

Because of the wide range of phenomena in sound understanding
that causal uncertainty drives, being able to manipulate a sound ob-
ject’s intrinsic causal uncertainty would prove very useful in audio
experience and interface design. For instance, subtly altering the
causal uncertainty of objects in a virtual reality soundscape might
allow us to steer a listener’s attention or focus towards specific spa-
tial regions with time; we could envision augmented reality devices
that modify causal uncertainty in the sounds that surround a user
during periods of intense cognitive load to minimize distraction or
surprise; and we might imagine algorithms that manipulate causal
uncertainty in foley sounds used for film soundtrack design in an
attempt to achieve heightened emotional impact.

To this end, we present a method for changing a sound’s causal
uncertainty by optimization over perturbations in its acoustic prop-
erties. Unlike in the ecological audition or psychology literature,
we cannot practically compute causal uncertainty by human la-
bel annotation and consensus [1, 4, 19, 23]. Instead, following the
proposal in [2], we use the uncertainty of a pre-trained audio classi-
fication model released by Google, called YAMNet 1 [15], as a proxy
for human causal uncertainty (see Section 2). To the best of our
knowledge, this is the first known attempt at manipulating causal
uncertainty in a structured fashion. Our early results point towards
the possibility of using more generalizable learning methods (e.g.,
methods that can scale to multiple sounds and learn to use a wider
range of manipulation strategies) with significant implications for
experiences in sound interaction.

Our key contributions in this work are as follows:

(1) We design an optimization procedure which takes a sound
excerpt as input and perturbs select acoustic properties (such
as amplitude, pitch, playback speed, etc.) to scale the sound
to a desired level of causal uncertainty.

1https://github.com/tensorflow/models/tree/master/research/audioset/yamnet
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(2) We apply the procedure to a selection of environmental
sounds, quantitatively describe the results of the optimiza-
tion in terms of convergence and the distribution of changes
in acoustic features across sound classes.

(3) We demonstrate the effectiveness of the approach by con-
ducting user listening tests, and show that listeners reliably
perceive changes in causal uncertainty, matching those from
our optimization procedure, in a sound comparison experi-
ment.

2 RELATEDWORK
Following the experimental psychology literature [4, 19], previous
work has defined and quantified causal uncertainty in a dataset
called HCU400 [1]. The authors of the work curated a set of approx-
imately 400 sounds that intentionally span the spectrum of source
ambiguity (from natural, environmental sounds to artificially syn-
thesized sounds), and obtained crowd-sourced annotations for the
labels corresponding to each sound. They proposed a metric esti-
mating the cluster density of a sound’s labels in a word embedding
space as a measure of causal uncertainty, or Hcu , and assign this
measure to each sound in the dataset. Higher Hcu corresponds to a
more causally uncertain sound.

In this initial work, the authors discuss how causal uncertainty
affects other high-level properties of sound. They find that Hcu
affects emotion (as higher Hcu sounds have less polarized emotion
ratings), familiarity, and imageability.

Later work used this dataset in a memory game to quantify how
Hcu and other features interact in sound object-driven auditory
memory [23]. In the work, researchers showed thatHcu was among
the most important features in predicting a sound’s intrinsic mem-
orability and “confusability" (likelihood to be selected as a false
positive target). This work adds to the sound psychology literature
in suggesting the significance of causal uncertainty in auditory
cognition.

Finally, the authors in [2] suggest that the human annotation
method for calculating Hcu for a previously unseen sound sample,
which entails crowd-sourcing tens of labels and performing cluster
analysis in a knowledge graph space, is not scalable to real-world,
real-time applications. They propose a weak proxy that uses the
probabilities associated with the class predictions of an audio clas-
sification model as an analog to human uncertainty in estimating
the cause of a sound sample, which we adopt in this work.

In this work, we aim to extend methods to quantify causal uncer-
tainty by presenting a strategy tomanipulate it. Specifically, we seek
to morph sounds towards a target Hcu . To this end, methods for
altering sounds have progressed significantly in recent years. New
large-scale, statistical approaches using neural style transfer, gen-
erative adversarial networks, and other deep learning techniques
have produced impressive results in the domains of music, speech,
and environmental sounds [7, 8]. However, we find that such ap-
proaches require large datasets and significant compute to achieve
training stability and convergence, especially in the context of the
proposed task, which demands subtle changes to create ambiguity
without significantly altering, adding, or removing sound objects
or events. We further expect statistical methods to pose challenges
in stability and complexity, because our method for estimating Hcu

from a sound excerpt also requires a pre-trained neural network
which may suffer from a lack of adversarial robustness.

As a simpler, alternative approach that serves as a proof-of-
concept, we take inspiration from the work in [3, 17, 18], which
presented a per-image optimization pipeline to modify the visual
memorability of face images. The problem in [3, 17, 18] is analo-
gous to ours, as both problems require similarly tight control over
semantic and lower-level properties. Their method succeeded in
optimizing images of faces to become more or less intrinsically
memorable, and the results of their approach were verified in a
perceptual task. Here, we take a similar approach in designing an
optimization problem, adapting the optimization space and cost
function to reflect the relevant semantic and acoustic properties of
audio.

3 METHODS
3.1 Overview
Our proposed method operates as follows, as shown in the illus-
tration in Figure 1. The method takes as input a target Hcu value
and a sound excerpt, and applies a Gaussian process regression-
based Bayesian optimization strategy [14], a “blackbox" optimiza-
tion framework, to determine parameter values for a small, fixed
set of acoustic transforms. To evaluate the parameter values, the
acoustic feature transforms are applied to the input sound, and a
cost function is computed on the result at each iteration of the opti-
mization. We utilize a blackbox approach because our cost function
is expensive to compute and not differentiable. For every sound
that we wish to manipulate, we apply this optimization for a fixed
number of calls and examine the result with the lowest cost as the
output. We examine the individual components of this optimization
process in the sections below.

3.2 Optimization Parameters
We first define the parameters we are optimizing. To begin with
a simple formulation, we create a constrained search space of se-
lect low-level audio features. We selected these features and their
parameter ranges based on their definitions in a popular sound edit-
ing toolchain known as SoX,2 which we also use to implement the
transforms. Table 1 shows the low-level feature values we optimize
over, along with the range of their search spaces.

Feature name Search range
Gain [-25, 25] (dBs)
Pitch [-250, 250] (hundredths of a semitone)
Playback Speed [0.5, 1.5] (rate)
Reverberance [0, 100] (factor)
High-pass filter [1, 3000] (Hz, cutoff frequency)
Low-pass filter [5000, 8000] (Hz, cutoff frequency)

Table 1: Features and parameter ranges for optimization.
Features are presented in the order they were applied to the
sounds

Note that when optimizing a sound to lower its Hcu (i.e., making
a sound more certain), we restrict the gain to [0, 25] dBs. This was
2http://sox.sourceforge.net/
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Figure 1: The system takes an audio input X0 and target causal uncertainty (Hcu ) value, and estimates parameter values Pt at
each time step t for a select set of audio transforms. The transforms are applied to x0 to generate a modified sound x̃t which,
along with Pt and the targetHcu , are fed to a custom cost function defined over error inHcu (LHcu ), relatedness in sound labels
(Llabel ), and transform magnitude (Ltransf orm ).

to ensure that sounds were not becoming “more certain" by being
converted to silence, an edge case in our optimization. We also note
that this approach can be extended to several other fine-grained
audio effects and transforms – examples include equalizers, limiters,
compressors, etc. – but we choose to limit our early explorations
to the set in Table 1 to achieve reasonable execution times under
limited compute.

3.3 Objective Function
In our optimization, we minimize the following loss function, which
consists of a weighted sum of three terms:

L = λ1LHcu + λ2Llabel + λ3Ltransf orm

where Lx represents a loss term constraining a different aspect
of the sound manipulation, and λi is a weighting term. Note that
each λi is defined either as a constant, or a function of the loss
terms. We provide the definitions for each term below.

3.3.1 Causal Uncertainty Constraint
LHcu represents a measure to compare the Hcu at the current

optimization step with the target Hcu , and penalize the error. We
define it as:

LHcu = |current Hcu − target Hcu |

where Hcu is computed following [2] by taking the prediction
output from YAMnet on the transformed sound and obtaining the
maximum mean probability output.

Then, we weight this termwith a λ1 parameter which is designed
to penalize larger values of LHcu more heavily. We defined λ1 with
a step function that monotonically increases as LHcu increases from
0 to 0.5, after which point it is constant.

3.3.2 Label Constraint

While changing Hcu is our main goal, it is important to do so
while preserving the label integrity of the initial sound. After all,
any sound can be made causally uncertain by adding noise to the
point that it is uninterpretable; doing this, however, results in little
utility for achieving control in sound experiences via subtle changes.
Therefore, we decide to penalize sounds based on how different

their labels are from the labels of the initial sound by introducing
Llabel .

To construct Llabel , we use node distances in the class ontol-
ogy of AudioSet, the dataset used to train YAMNet [11, 15]. The
ontology presents AudioSet classes in a tree structure. For exam-
ple, the label “cat" has child nodes “purr" and “meow." We can use
this tree structure to our advantage to create an intuitive Llabel
term. If we apply transforms that modify a sound that is initially
labeled a “purr," we would want to penalize it much more for becom-
ing a “chainsaw" than for becoming a “meow," given their relative
distances on the ontology tree.

Let S0 be the initial (i.e., before applying any audio transfor-
mations) set of top 10 most probable labels, and St be the top 10
most probable labels at step t . We define M to be a matrix of all
pairwise combinations of labels in S0 ∪ St . Mi j is defined as the
number of edges between label i and label j in AudioSet’s ontology.
For instance, a child-parent relationship consists of a single edge,
and a sibling-sibling relationship consists of two edges. For label
combinations where no connection exists between nodes, we set
the distance equal to one more than the maximum possible number
of edges. Then, we define Llabel as the mean of Mi j |i<j (i.e., M
is symmetric, and we ignore diagonal entries, where we have the
“distance" between a label and itself).

In defining λ2, we have two separate cases:
(1) Target Hcu > initial Hcu (i.e., making a sound less certain)
(2) Target Hcu ≤ initial Hcu (i.e., making a sound more certain)
In case (1), we scale λ2 according to the current Hcu . This is

because as we raise Hcu , we expect the labels to vary slightly, so
we want to relax the total penalty of the λ2Llabel term. As such, in
case (1), we define:

λ2 =
1

1 + current Hcu

In case (2), we scale λ2 according to the current Llabel . When
making a sound more certain, it is crucial to maintain its labels. So,
we apply the following very strict penalty for label distance:

λ2 =
1

1 − Llabel + ε

3.3.3 Transform Constraint
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We lastly design a loss term to penalize large changes in the
transform parameters. Ltransf orm is a normalized sum of our trans-
forms such that the largest transformation of a specific feature
corresponds to a penalty of 1 for that feature. We define it as:

Ltransf orm =
1
6

(
|gain|

gainmax
+

|pitch|
pitchmax

+
|speed − 1|

speedmax − 1
+

reverb
reverbmax

+
HPF

HPFmax
+

LPFmax − LPF
LPFmax − LPFmin

)
and λ3 is set to a constant scalar.

4 EXPERIMENTS
4.1 Dataset
To evaluate our approach, we apply our optimization method to
a selection of sounds from Google’s AudioSet dataset [11]. The
original dataset consists of 632 classes of sounds, with more than 2
million 10-second sound examples in total; however, we choose a
small set of illustrative examples to demonstrate our results. Specif-
ically, we choose four broad categories of environmental sounds –
human sounds, animal sounds, nature sounds, and inorganic sounds
– and selected pairs of classes of sounds within each category. These
include:

• Crying and laughing (human sounds)
• Dog and cat (animal sounds)
• Fire and water (nature sounds)
• Wood and glass (inorganic sounds)

We run our optimization on all examples within the AudioSet
balanced partition which list one of these categories, or their chil-
dren in the ontology, as their primary label. This gave us 323 sounds
in total (approximately 40 sounds per class). We downsample the
audio to 16000 Hz to allow for compatibility with the YAMNet
model, which is embedded in the cost function. This downsampling
results in audio with less high-frequency detail, which may result
in a narrower scope for subtle manipulations; however, this is a
limitation of the network, rather than our approach.

4.2 Optimization Targets
For each sound in our curated dataset, we apply the optimization to
generate both a more uncertain (higher Hcu ) and a less uncertain
(lower Hcu ) version, with target Hcu values of 0.8 and 0.2 respec-
tively. We therefore restricted sounds in our dataset to include only
those within an initial Hcu range of 0.3 and 0.7. This restriction
ensures that we sample sounds from a broad range of ambiguity
that require some modification to reach our target Hcu .

We allow the optimization for each sound to run for a maximum
of 200 iterations using the parameter search ranges and cost func-
tion described in Sections 3.2 and 3.3. The initial values for the
audio transforms are set to be neutral (zero gain, playback rate of 1,
etc.), and the YAMNet model prediction is used to obtain an initial
list of the top 10 labels describing the sound.

4.3 Perceptual Evaluation
We finally create a listening task to evaluate whether our optimiza-
tion results reflect human perception. Specifically, we wish to know

whether raising or lowering a sound’s Hcu results in more or less
certainty in listener source estimation.3

We create a task wherein participants are asked to listen to two
sounds and choose the sound for which they have greater certainty
in its source. On 1/3 of the trials, the two sounds presented were the
unchanged sound (the anchor) and the higher Hcu version of that
sound, as created by our optimization pipeline. On 1/3 of the trials,
the two sounds were the anchor and the lower Hcu version of that
sound. On the remaining 1/3 of the trials, there was no anchor; the
two sounds presented were the higher Hcu and lower Hcu versions
of the same sound. This creates a two-alternative forced-choice task
to quantify our success in changing a sound’s causal uncertainty.

A single experiment included 48 trials in total, split into 6 blocks
of 8. Each block contained one sound sample of each class. The
sounds chosen, along with the order of the sounds within-block,
the order of the trial types, and the position of the more certain
sound, were all randomized within-subject.

To conduct the study, we recruited 20 participants from the
online crowd-sourcing platform Prolific (for a discussion of the
reliability of Prolific’s subject pool, see [22]). Each experiment took
approximately 25 minutes, and each participant was compensated
upon completion of the experiment.

5 RESULTS
5.1 Optimization Results
Figure 2 shows the convergence values of unweighted loss terms
(i.e., LHcu , Llabel and Ltransf orm ) for each class in our optimiza-
tion when raising and lowering causal uncertainty.

We note that our system was much more successful in raising a
sound’s causal uncertainty than in lowering it, as demonstrated by
the lower LHcu values. Conversely, when lowering a sound’s causal
uncertainty, the optimization pipeline maintained the labels more
consistently, as shown by the lower Llabel . Both raising and lower-
ing causal uncertainty required similarly large transformations to
be applied; both have a similar Ltransf orm .

To listen to samples of the original and manipulated sounds, visit
this OSF repository.

5.2 Perceptual Evaluation Results
In our perceptual task, human evaluations aligned with our opti-
mization results. Subjects were able to choose the more causally
certain sound (as determined by our proxy Hcu ) at a rate signifi-
cantly above chance (t(19) = 4.46, p < 0.0001,M = 57.60%, 95% CIs
= [54.04%, 61.17%]). This was not simply driven by a few subjects
performing with very high accuracy; 16 of 20 subjects chose the
more causally certain sound over half the time.

The results of each of the three trial types (higher-anchor, higher-
lower, and lower-anchor) were significantly different from chance
(see Figure 3). On higher-anchor trials, participants had nearly per-
fect accuracy (90.15%). On higher-lower trials – where the original
sound was not presented – participants chose the more causally
certain sound 68.96% of the time. Finally, on the lower-anchor tri-
als, participants consistently mistook the original sound as more
causally certain than the one with lower Hcu (12.81% accuracy).

3You can try the task yourself at http://audio-mafia.media.mit.edu/hcu_task/
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Figure 2: A comparison of unweighted loss terms when raising and lowering Hcu for sounds of each class. Error bars are 95%
CIs.

The very poor accuracy in the lower-anchor trials has two poten-
tial causes. First, it highlights the challenge of making the source of
a sound less uncertain, using only a simple set of acoustic tools – we
discuss the framing of the task and future strategies for improving
performance in Section 6. Secondly, the results demonstrate that
participants potentially perceive any change to a sound using our
effects chain as increasing its source ambiguity, suggesting that
the manipulated sounds do not seem natural. We expect that this
behavior can be controlled for by more subtle, computationally
intensive sound operations (see Section 6).

Finally, we compare the accuracy per class in our perceptual
task. In Figure 4, we note that we do not have homogeneous results
across classes; for instance, sounds with the labels fire and water
– the two natural sound classes – have lower accuracy than the
sounds with other class labels. This hints at differences between
sounds – either spectral, semantic, or both – that could be further
exploited for the manipulation of causal uncertainty, with deeper
analysis that could stem from a larger number of data points per
trial.

Figure 3: Grouped subject accuracy for each trial type in per-
ceptual task. Error bars are 95% CIs. All groups differ from
0.5 with p < 0.001

Figure 4: Grouped subject accuracy for each class in the per-
ceptual task, across trial types. Error bars are 95% CIs.

6 DISCUSSION AND FUTUREWORK
We have shown that our optimization pipeline succeeds in altering
a sound’s Hcu to within a close range of a target while maintaining
its labels. These results are then confirmed by a perceptual task,
where human judgments match our optimized results. The results
from the perceptual task shed light on interesting areas of further
work, especially regarding limitations in our dataset, methods, and
the notion of changing Hcu .

6.1 Dataset selection
In our evaluation, some limitations stem from our sampling ap-
proach. For example, several sounds of one class may not be isolated
(e.g., a “rain" sound having thunder in the end), which affects both
its cognitive properties (as thunder may help one identify the sound
as rain) and its transformations (as the same transform affects the
uncertainty of rain and thunder differently). On the contrary, we
do not perceive sounds in perfectly isolated environments; we per-
ceive them as part of a broader world, which often includes other
sounds and properties. Our dataset selection reflects how one would
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change sounds “in the wild" as opposed to in controlled, isolated
environments.

Along with the issue of isolation, our dataset contains a wide
variety of sounds within a specific class. Within the class of “dog"
sounds, for instance, are sounds of both dog barks and dog cries.
While we choose the parent label as the “cause" to demonstrate our
approach, a more granular exploration would be a valuable future
exercise.

Finally, we evaluated our methods on a small subset of the to-
tal classes available in AudioSet. However, we chose both broad
categories (e.g., both natural and artificial sounds) and orthogonal
classes within our categories (e.g., dog and cat), which point to the
generality of our approach. We intend to expand our evaluation to
a broader set of AudioSet classes in future explorations.

6.2 Modeling approaches
Though we present a simple and robust approach, there are several
ways to extend our framework for changing a sound’s causal uncer-
tainty. One may consider how adding additional transformations
to increase sensitivity, removing transformations to create a more
controlled set of changes, or changing the order of transformations
may affect results.

Methods other than our blackbox optimization may yield better
results, too, given that corresponding changes to the dataset are
made. For instance, in a broader problem space employing a larger
dataset, deep learning-based approaches may yield better results,
as they can change not only low-level features (like we do here)
but also semantic features of the sound. Future work may explore
the viability of such approaches for this problem.

Despite its simplicity, this approach presents a first step in gen-
eralized methods for scaling complex properties of sound objects,
with powerful implications for user experiences. This optimization
methodology can be readily extended to other annotated sound
properties – examples include affect and memorability – when
coupled with custom or off-the-shelf proxy estimation models that
scale to real-world audio.

6.3 Meanings of causal uncertainty
The poor accuracy resulting from the lower-anchor trials in our per-
ceptual task raises questions regarding the philosophical meaning
of changing a sound’s causal uncertainty. Raising a sound’s causal
uncertainty is easy to define and understand, as it simply requires
making its source less clear. However, what does it mean to take an
already-uncertain sound, and lower its causal uncertainty? Seem-
ingly, the opposite of the raising Hcu definition applies – lowering
a sound’s causal uncertainty requires making its source more clear.
However, this requires adding information to a sound to allow it to
be more identifiable, which must be inferred. Our current methods
are not well-equipped to achieve this.

Perhaps making a sound less causally uncertain demands a
broader set of tools that includes both a suite of subtle, produc-
tion quality acoustic effects, as well as the insertion or deletion of
content on a semantic level. To experiment with the former, we
might expand the optimization space to include operations such
as multiband equalizers and compressors, band-specific filters, and
limiters, without constraining the order of application. To consider

the latter, we eventually look to large-scale statistical approaches,
such as deep neural networks, in order to learn to generate a wider
diversity of natural-sounding excerpts that meet the target Hcu
constraint.

Nevertheless, any future work requires additional analysis and
discussion surrounding the definition of reducing causal uncer-
tainty from the standpoint of cognitive processing and sound un-
derstanding.

7 CONCLUSION
In this work, we present an optimization procedure for manipulat-
ing the causal uncertainty of a sound. We select a set of acoustic
effects whose parameters we optimize over to alter an input sound,
and design a custom objective function to drive the input sound
towards a targetHcu while minimizing both the magnitude of trans-
formations applied and changes to the original set of labels ascribed
to the sample by a pre-trained audio classification network. We
demonstrate reasonable convergence errors across sound classes
in our test dataset, and show that the results from a perceptual
listening task align with our optimization results. Given the impor-
tant role that sound source causal uncertainty plays in auditory
cognition, we believe this work demonstrates immense potential for
new paradigms in auditory interface and user experience design.
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